
. NATIONAL ADVI$ORY/_COMMITTEE :<_
FOR AERONAUTICS

WASHINGTON

July 26, 1948
o





NACA RM No. L8F30

NATIONAL ADVISORY CO_ITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

4"

APPLICATION OF THEODORSEN 'S THEORY

TO PROPELLER DESIGN

By John L. Crigler

SUMMARY
', Z , i

_2_ - A theoretical' analysis is presented for obtaining by use of

Theodorsen's propeller theory the load distribution along a propeller

radius_ to give the optimum propeller efficiency for any design condition.

The efficiencies realized by designing for the optimum load distribution

are given in graphs, and the optimum efficiency for any design condition

may be read directly from the graph without any laborious calculations.

Examples are included to illustrate the method of obtaining the optimum

load distributions for both single-rotating and dual-rotating propellers.

INTRODL_TION

Recent contributions to the theory of propellers have been made by

Theodorsen in a series of reports (references 1 to 4). In the first

report of the series (reference l) a method based on electrical analogy

was devised for obtaining the ideal circulation functions for single-

rotating propellers. These circulation functions were shown to be in

good agreement with the theoretical calculations made by Goldstein in

reference 5 for two- and four-blade single-rotating propellers and with

the extrapolations to other numbers of blades made by Lock and Yeatman

in reference 6. The electrical-analogy method of measuring these

functions was also applied to more difficult cases for which no theo-

retical calculations had previously been made; in particular, to the case
of dual-rotating propellers.

Theodorsen in reference 1 introduced the concept of the mass

coefficient _, which is an integrated value of the circulation functions.

The mass coefficient represents the effective cross section of the column

of the medium pushed by the propeller divided by the projected-propeller-
wake area.

This mass coefficient is made use of in the development of

Theodorsen's theory. In reference 4, expressions are given for computing

the thrust, the energy loss, and the efficiency of any propeller with
ideal circulation distribution based on the conditions in the final wake

in terms of the mass coefficient. It is of interest to mention that the

mass coefficient or mass of air operated on by the dual-rotatin_ _rooeller
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is much greater than that affected by the single-rotatlng propeller for
the same set of operating conditions. This large difference in the mass
coefficients for the two cases indicates that calculations for dual-
rotating propellers based on the ideal circulation functions for single-
rotating propellers are inadequate.

Theodorsen's theory, as previously mentioned, is based on the
conditions in the final wake. The present analysis attempts to inter-
relate the conditions in the final wake to the propeller and to give the
information necessary to designa propeller for any desired operating
condition. For single-rotating propellers, the method yields the same
results as the conventional vortex theory with the Goldstein tip correc-
tions applied. By the conventional vortex theory, however, it is
necessary to determine the optlmumblade-load distribution and then to
make element strip-theory calculations in order to obtain the optimum
efficiency for a given design condition. This procedure has been followed
in reference 7 for a wide range of operating conditions. By Theodorsen's
theorythe optimum efficiency _ can be obtained directly for an_ design
condition from its relationship to the mass coefficient without laborious
calculations. Thus, in the selection of a propeller for any design '
condition, a close estimate of the efficiency can be obtained before the
design is made.

The circulation functions and mass coefficients for the dual-rotating
propeller were obtained in reference 1 for the ideal case and refer to
conditions in the ultimate wake. Both propellers were assumedto operate
in the same plane. Obviously, this condition is unattainable in the
design of an actual propeller. The degree to which the ideal case can be
realized in practice, or the applicability of the ideal functions to a
given case, require further consideration and confirmation.

SYMBOLS

B

b

cd

cZ

Pc

PcT

C s

number of propeller blades

chord of propeller-blade element

section drag coefficient

section lift coefficient

ideal Power coefficient

total-power coefficient

C s + e)

(Pc + tr)

II_I'
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Cs T

D

&

Do

E

e

F

i(x)

I

n

P

R

r

T

t

ta

tr

V

Va

ga

Vi

V r

net thrust coefficient (c s - ta)

diameter of propeller

drag of propeller section

diameter of wake helix surface

ideal energy loss inwake (pF_w_(_v+ 1V))

energy loss due to blade drag

induced energy loss coefficient i

projected area of helix (at infinity)

circulation function

llft of propeller section

propeller rotational speed, revolutions per second

input power to propeller "

tip radius

radius to any blade element

thrust of propeller

power loss due to drag (nondimensional)

axial power loss due to drag

rotational power loss due to drag

forward axial velocity of propeller

axial interference velocity (at propeller)

average axial interference velocitY (at propeller)

resultant interference velocity (at propeller)

rotational interference"velocity (at propeller)
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%

W

ws

w

X

(z

C_l

k

kg

0

P

q_

q_o = tan-i V/nD
_X

uo

average rotational interference velocity (behind each

propeller)

resultant velocity on the propeller at radius r.

local self-interference velocity

rearward displacement velocity of helical vortex surface

ratio of displacement velocity to forward velocity (w/V)

radial location of blade element (r/R)

angle of attack, degrees

induced angle of attack, degrees

blade angle, degrees
w

adv_r_ce r_ti° ( 1 v "_ w)_ nD O

geometric advance ratio (V/mID)

mass coefficient 2 K(x)x dx

axial energy loss factor

cs -ta )propeller efficiency Pc + tr

(%#0)

mass density of air

propeller element solidity (Bb/2_r) -

propeller element load coefficient

circulation at radius x (r(x) = 2_ + w)w K(x)_
\ Iko /

angle of re_._ultant velocity W at plane of rotation

angular velocity
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Subscripts :

F

R

o. 7R

front

rear

at 0.7 radius

OPTIMUM PROPELLER DESIGN

Single-Rotating Propellers

Velocity diasram.- The velocity diagram for the single-rotating

propeller is shown in figure 1. This figure is a reproduction of

figure 13, reference 2, with some additional designations. The relation-

ship between the axial interference velocity at the radius r, as given

by the vortex theory, to the displacement velocity w of the vortex sheet

is calculated in reference 2 and is shown in figure 1. The forward axial

velocity of the propeller is V and thetangential velocity with respect
to the air at rest is _r. The vector bd is the resultant interference

velocity V i of the air with respect to the air at rest. Thus, the

resultant velocity W of a point on the propeller at the radius r is

given by the vector cd. The lift force _ is perpendicular to this

vector and the drag force d is exactly opposite in direction to W as

indicated. From this figure a comparison of the method of analysis

presented herein may be made with the conventional vortex-theory method.

It is required to find the point d in order to locate the end of the

velocity vector W and the angle qD that the vector W makes with

[the direction of rotation. By the conventional vortex theory, the

point d is located by starting with point b obtained from the V/nD

of the undisturbed flow, proceeding in the V direction the distance Va,

and then taking the perpendicular to this direction a distance Vr.

V +V a
(See reference 8.) The angle _ is given by tan _ -

_r - Vr

V + Va In the calculation of interference velocities Va
and W = sin _"

and Vr the local tip correction or Goldstein factor must be used to

obtain the correct location of the point d.

With the method developed in references i to 4, only the value
i

of _ w, which remains constant with radius, need be used. With this

concept it is possible to use the integrated values of the mass coef-

ficient as determined by the electrical analogy of reference i to obtain

the detailed information needed at any radius. By this method the

point d can be located by proceeding from point b a distance _ w in
2

the V direction to the point e and then do}m the direction of the
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velocity vector W a d&stance de, where
geometry of the figure as 1 w sin _ and

2

tanq_ =

v+lw
2

(Dr

d-e is obtained from the

(i)

The resultant velocity is

W

V+lw
2 1

w sin q_
sin q_ 2

i (V + i cos2qD)= sin----_ _ w
(2)

The interference velocities may be obtained from the geometry of the

figure by

and

1
vi = _ w cos

1
Va = V i cos qD = _w cos2q_

i w sin q_cos
Vr = V i sin q_ =

Optimum blade-load distribution.- The design problem of an optimum

propeller consists essentially in obtaining the value of the element

load coefficient bc z at each radius of the propeller blade. With the

direction and magnitude of the relative velocity given at each station

there remains only the choice of a section to give efficiently such a

lift at the appropriate angle of attack, The value of cz should be

at or near the ideal lift coefficient for the section in order to give

minimum drag coefficient•

The method developed in references I to 4 treats the velocity w

as an independent parameter upon which all the other quantities depend•
This reversal of procedure is Convenient since all quantities are

actually functions of w. The velocity w is related to the power

coefficient Pc of the propeller and also to the element load coef-

ficient gc I. The relation of w to _cz is developed herein and the
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relation of w to Pc, which must be obtained in order to use it for
design, ls given subsequently in the section '_ROCEDUREFORPROPELLER
DESIGN."

The required ideal circulation F(x) is given in reference 1 by

r(x)=

_ (v+ w)wK(x)
Bn

(3)

In order to determine the element load coefficient bcl the relation

for the equality of the force on a vortex element and on an element of

a lifting surface is given as

i pW2clbO_W =_

where b is the chord of the element. Hence,

where W is given in equation (2), and thus

r_l i (V+I 2q_>2 sin q_ _ w cos c_b

(4)

(5)

Using equations (3) and (5) for F gives at once the identity

(V + w)w _-_,_tx_ 2 sin q_bc_
Bn V + 1 w cos2_

2

Introducing the nondimensional velocity w =_, the
i

V+_w
solidity _ = B___band tan _ = (equation (i)) gives the non-

2_r' 2_rn

dimensional relation
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l+w

( 1 )(1+1 )1 + _. _. w cos2_
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2VIK(x) sin2q_ " (6)
cos

The selection of a propeller for a given airplane installation may

be based on a method of evaluating a series of propellers for various

operating conditions in order to determine the most suitable propeller.

It is probable that several propellers, varying in diameter, blade

number, propeller operational speed, and direction of rotation are

equally as efficient for the design condition so that other considerations

may enter into the propeller selection. However, the optimum efficiency

for the propeller selected may be obtained from the charts, and therefore

the load distribution along the radius that will give this optimum

efficiency remains to be determined.

The value of ccz may be calculated for any radius from the

relation

l+w,
GC =

sin2 
cos

where

1+Iv 1+Iv

_p = tan-ll V 2 = tan -I kg 2 (7)
_nD x x

Dual-Rotating Propellers

In the design of dual-rotating propellers, it has been customary to

select two propellers designed for single rotation and to use them as a

dual-rotating propeller.. The fact that the circulation functions and the
mass" coefficients obtained by the electrical-analogy method (reference l)

are very much larger for the dual-rotating propeller than the sum of the

values for the two single-rotating propellers indicates that the functions

as used heretofore are not proper. The electrical-analogy method

represents the case of_an idealized dual-rotating propeller in which the

two components are in the same plane with the same load distribution on_ each component and with equal power absorption. Since actual propellers

cannot conform to this ideal case, the applicability of the ideal

functions requires further confirmation. Nevertheless, the optimum

distribution for the dual-rotatingpropeller is essentially different

from the single-rotating propeller, and in this analysis the loading
functions and the mass coefficients as determined by the electrical-

analogy method are assumed to apply to the optimum dual-rotating

propeller.

FF_! T
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Interference velocities for dual-rotating propellers.- The average

axial interference velocity far behind the propeller obtained from the

momentum considerations is

m

2V a = _w

v

where _ is the mass coefficient and w is the axial displacement

velocity. This mean value is equally due to each of the twooppositely

rotating propellers. The average axial interference velocity due to

each is therefore exactly

The average interference velocity at the propeller plane is one-half the

value in the final wake and, therefore,

l a_-I

i m •

where _ Va represent°s" the average axial interference velocity at the

propeller plane due to each component of the dual-rotatlng propeller.

With the two propellers separated by a small axial distance# this

velocity refers to a plane between the two propellers. The interference

velocity at the front propeller is smaller and at the rear propeller is
larger than at the plane between the propellers. In the following

treatment, the propellers are considered to be very close together so
that the axial interference velocity is the same on both propellers.

In the final wake, the mean value of the rotational interference

velocity for the ideal case is given by

For an infinite number of right and left blades equally loaded, rota-

tional components would cancel exactly. However, the average rotational

interference velocity immediately behind each propeller may be considered
as

1
_r : _,w tan qD
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In summary, the mean interference velocities acting on the front
propeller from the rear propeller are:

Axial: l[a .1 _w
2 4

Rotational: _r = 0

The mean interference velocities acting on the rear propeller from the

front propeller are:

Axial:

Rotational:
1

fr :g tan 

It is useful to recognize that the mean self-interference of each

propeller in its own plane is

Axial: i, _w
4

Rotational: 1 _w tan q_
4

Velocity diagram for the dual-rotating propellers.- The velocity

diagram for the dual-rotating propellers is shown in figure 2. As in

the case for the slngle-rotating propeller, the axial displacement
1

velocity at the propeller Is equal to _ w. In figure 2 the vector AB

gives the mean axial interference velocity ! _w of each propeller
4

acting on the other propeller. The vector B-C- gives the mean rotational

1
interference velocity _ _w tan _ Of the front propeller acting on the

rear propeller. The total interference velocity acting on__the front

propeller from the rear propeller is therefore given by AB, and the

total interference velocity acting o__nthe rear propeller from the front

propeller is equal to the vector AC. The local self-interference

velocity of the front propeller is given by WSF , and the corresponding

helix angle is given by _F" The local self-interference velocity of the

[I_]-_-
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rear propeller is given by WSR, and the corresponding helix angle is

given by q_R" The angle _F is slightly larger than the ideal helix
1 w and _R is slightlyangle _ given by the displacement velocity

smaller than _. The design condition of most interest is the one for
which FF for each blade of the front propeller is equal to FR for each
blade of the rear propeller. The number of blades on the front and rear
propeller are considered equal and the rotational speeds the same. This
condition gives the self-interference veloc__ty on the front propeller
equal to the self-interference velocity on the rear propeller and means
that D and E must be at the samehorizontal level,

As _F and _R are needed in the design of the propeller, it is
seen from figure 2 that the associated displacement velocity on the front
and rear propellershas been increased and decreased, respectively, by
the amount

1
Aw = -- _w tan-@

4

The displacement velocity is therefore

Front:

Rear: lw( 1 _i_ tan2_)2 2

From figure 2, the velocity WF is shown to be given by the

relationship

WF _ ._V + i _w sin @o

sln ° 4

_ V (i + l_sin2q_o)
sin _o 4

(8)

and the angle _F is given by
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1
i+_.

oJr

1
+_ (9)

where D i8 given by the relationship

v+lw
2

tan D =

Similarly,

V

sin Do
+ l_w sin Do + 1 _ tan Do

4 2 cos Do

v + 3 _i_%
sin Do 4

and

_..v(l+3 )
= sin Do _ a_ sin2Do

tSJl DR = G)r

V+_w i-_

nD _x _ - 2" _: tan2D

(io)

(li)

Optimum blade-load distribution.- The optimum distribution of
blade loading is obtained from the determination of the element load

coefficient bc z at each radius from the fundamental relation

i_
obc IW2 = OI_W

2

rT_IU
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where F has been given in equation (3) by

r : (v-,-w)_K(_)
Bn

Eliminating F gives

(v W)W

2 n

but _ Bb = _ is the solidity of each component of the dual-rotating
2 2_r

propeller, if the number of blades in each component are assumed to be

equal. Therefore,

_c_W: --_(l + V)wVK(x)

For the front propeller, this equation maybe solved by use of

equation (8) and

V 1 (1 + _)_ sin q_o K(x) (12)

( ) - in2_oi _s
_cl F nD _x i +

and for the rear propeller by use of equation (lO)

(1 + _)_ sin q_o K(x) (13)
) v i( _cl R =nD _x

1 + _ _ sin2q_°4

Use of Design Formulas

In order to use the relation for _cl, note that it contains not

only the independent variable _ but also the function K(x) and the

angle _. The parameter K(x) should be expressed as a function of V + w
nD ° •

which is based on the wake helix diameter. As was shown in reference 3,

however, Do differs only slightly from the propeller diameter D and in

the present design procedure D is used instead of Do• The function K(x)
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for single-rotatingpropellers is plotted against V + w in figures 3
nD

to 7" Similar plots for dual-rotatlng propellers were taken from
reference 1 and are presented in figures 8 to 10.

EQUATIONSFORPERFORMANCECALCULATIONS

Single-RotatingPropellers

In reference 4 the thrust has been given by

T = Ol_w +w _+

and the ideal energy loss in the wake has been given by

(0 l)

With the introductlon of the nondlmensional quantity

coefficient in nondimensional form is

the thrust

T
C s =

1 pV2F

and the induced loss coefficient is

E
e --

1 pv,3F

2_2( l _')= _'+ --N

The power coefficient Pc = Cs + e is given by

(i4)

(l_)

]V_T
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Pc = 2_(1+ w-_(1 + _-w)
(16)

The efficiency is given by

Cs (17)
_i =_cc

These formulas are all that are necessary for slngle-rotating

propellers. The performance of the dual-rotatlng propeller is computed

by the same formulas.

Dual-RotatingPropellers

The thrust of the front propeller is given by

>dTF = _ p(2_r) scz F

and with
(_C_)F

from equation (12) and WF from equation (8)'

TF p o v3_(1 + _)1_= E n. +_1.7 sin2%) sin_oC°S_F K(=) d_ (18)

Similarly, for the rear propeller

cos _R K(X) dxTR = p D V3_(I + _)i + _ K_ sin2_
4 n 4 sin _0"

(19)

The coefficients Cs, e, and Pc for the dual-rotatlng propellers

are given in the same form as in equations (14), (15), and (16) for single-

rotating propellers. The only difference in the coefficients results from

differences in the values of _, _, and e/_ which are substituted in

the equations.
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Blade-Drag Losses

The frictional loss or loss in efficiency due to the profile drag
of the blade is

RP 3
ED = B _ bCdW dr

U0

1
pW-bc d where W, the resultantThe drag force per unit length is 5

velocity of the blade element, has been given in equation (2) for single-
rotating propellers by

2)
1 V + _ w cos

W - sin _ 2

For the design condition, w is small, and because of the obvious

uncertainties in the determination of the value of Cd, it is not

1
to retain the second term _ w cos2_. Introducing thenecessary

solidity factor _ _ Bb permits the drag loss to be given by
2_r

i
ED _R2pV 3 GCd= -- x dx

sin3qD

or in nondimensional form

ED
t =

i pV3_R 2

=2

1 GCd

---xdx

s in3_p

The component power losses are then, to the same degree of

approximation in nondimensional form,

(2o)
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1
Rotational: tr = 2 _Cd x 3 dx (21)

kg2 sin q_

n1
Axial: t a = 2 aCd--.x _x (22)

sin
LO

For the dual-rotating propeller operating at the design conditions, the
terms containing w are small, as is the case with the single-rotating
propeller, and a close approximation to the drag loss is obtained if
these terms are neglected. Furthermore, if it is assumed that the
average of the resultant velocity W for the dual combination is equal
to W for the single propeller, the equations (20) to (22) may be used
for the dual-rotating propellers. Of course, for conditions other than
the design condition, especially for very heavy loadlngs, exact drag-
loss claculations require that the exact equations be used for either
single-rotating or dual-rotating propellers.

In summary, the equations for obtaining the propeller performance
are given by the quantities Cs, e, and Pc and the drag-loss factors
are given by t r and t a.

The net thrust power is

csT = cs - t a (23)

The power input is

PCT= cs + e + t r = Pc _ tr
i

The efficiency is

cs - ta CsT

Pc + tr Pc T

(24)

(25)

where from equation (16)

Pc = 2_(i + _)(i + £__)



18 NACARMNo. L8F30

The total power is also glven by

1 B R2P
P = CT (26)

It should be remembered that the calculation is based on a given _.

This procedure may seem unjustifiable since thls parameter is not given
by the specification but is the end result of a calculation based on the

original data. The induced "loss does not depend on the total-power

coefficient PCT , but actually depends only on Pc, and the quantity

cannot be obtained from the total-power coefficient. However, the

value of PCT in most cases exceeds Pc by not more than 2 percent or

Pc = 0.98 PCT

Since Pc in equation (16) ts based on the _ and the diameter

of the final wake, and the value of PCT in equation (24) is based on

the propeller diameter which is slightly larger_bhan the diameter of
the final wake, a very close approximation to w is usually given by

equation (16). Therefor%
s

+

In some cases it may be necessary to calculate tr to obtain a more

exact value of Pc, especially if the blade profile drag is large.

PROCEDURE FOR DESIGN OF PROPELLER

Figures Used i_ Propeller Design

The information necessary to design a _ropeller for any operating

condition is given in the figures. Figures 3 to 7 give the circulation

function K(x) interpolated for even fractions for two-, three-, four-,

six-, and elght-blade single-rotating propellers. The circulation

function for the two-blade propeller was taken directly from reference 5_

for the three-blade propeller, from reference 6; and for the propellers
having a greater number of blades was recalculated from the Goldstein

tip correction factors as given in reference 7" Figures 83 93 and l0

give K(x) for dual-rotating propellers with four_ eight, and twelve

blades, respectively. These values for the dual-rotating propellers

f[_I
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were taken from reference i. Figure ii gives the mass coefficient
for various numbers of blades for single-rotating propellers. Figure 12,
which was taken from reference l, gives _ for dual-rotatlng propellers.
The ideal efficiency _i is plotted against _ for a range of

values _/_ in figure 13, against Cs/_ in figure 14, and against Pc/_
in figure 15. The data for figures 13 and 14 were taken directly from
reference 4 and the data for figure 15 was recalculated by the use of
equation (16) and figure 13. Figures 13 to 15 apply to either single-
or dual-rotating propellers. The propeller efficiency may be calculated
from either of these figures_ however, in this report the efficiency has
been determined from Pc/al as given in figure 15.

Figures 16 and 17 give values of g, _, and _/_ for two _ and four-
blade single-rotatlng propellers and figures 18 to 20 give values for
four-, eight-, and twelve-blade dual-rotating propellers. The values
of g for a propeller with a finite number of blades have not previously
been published, but the values of g and _/_ for an infinite number of
blades are given in figure 4 of reference 4. The method for calculating
g/a and ¢ is given in the following section.

Propeller Selection

In the selection of a propeller for a given airplane installation,
the engine power, the forward speed, and the designaltitude are usually
specified. The selection consists of the determination of the number of
blades, the propeller solidity, the propeller diameter, and the rotative
speed. The ideal propeller efficiency for any combinations of these
variables can be readily obtained with the use of the charts. The
procedure for a given blade number, propeller diameter, and rotative
speed for either single or dual rotation is as follows_

First, calculatethe total-power coefficient

=

P

PCT = i pV 3 __ D2
2 4

and then use this value for the ideal coefficient

to find w. -_-
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It was shown in reference 4 that the dependence of the efficiency

on _/_ in the efficiency formulas is very small and that it is suffi-

cient to know only the approximate value of _/_. An examination of the

formulas for cs and Pc shows that their dependence on _/_ is also

small. It was further concluded in reference 4 that _/_ is only

slightly greater than _ and that the practice of using _/_ instead

of _ is considered satisfactory for design purposes. However, there

appears to exist a simple relation between the axial-loss factor _ and
the total-loss factor _. This relation takes on the form of a

differential equation

ikd_
-=l+

2 _dk

where

k _IV+w

nD o

This relation has been checked and found to be exact for an infinite

number of blades, and numerical checks for a two-blade propeller were

in very close agreement. It is considered accurate for an empirical

relation for design purposes for propellers of other numbers of blades.

First obtain

IV
kg =_nD

as a first approximation to k for use in the calculations. Then read

off a and d_/dk from the appropriate charts of a against _(1 + _)

for several values of w (figs. ll and 12). Curves of E, a, and _/_

are plotted against _(1 + _) in figures 16 to 20. Next plot a curve

for the right side of the equation for Pc against _. Where this

curve intersects the horizontal line, Pc = Pc T is the desired point.

This value may be checked from the chart by inserting the values obtained

from the plot in the equation. Thus are obtained _ w-, V--W(1+ _),

and _/_. From the chart of Pc/_ (fig. 15), the optimum efficiency may
be obtained.

IF_I
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The following examples illustrate the method of determining the
optimum distribution of bc_ along the radius for both single-rotatlng
and dual-rotating propellers that give the maximumpossible efficiency
(neglecting blade profile drag) that can be obtained with either
propeller for one specified design condition.

Illustrative Examples

Sin61e rotation.- Let the following data specify the propeller

design conditions:

Power, horsepower ....................... 2000

Density, s_s p_r cubic foot ................ 0.001065

Velocity, miles per hour .......... , .......... 425

The propeller selection has been made to the extent that the following

data specify the propeller:

Rotational speed, n, revolutions per second ............ 23

Propeller diameter, D, feet .................... 12

Number of blades, B ........................ 4

v/no ............................. 258

The total PCT from the given conditions is

PCT =
P

i pV3_R2

(2ooo) (55o)

_-(0.001065 )(623 )3_ (6)2

=0.075

The value of Pc should be based on the wake diameter DO instead

of on the propeller diameter D and used to calculate _. Both Pc and

the contraction maybe obtained by successive approximations but the two

effects tend to cancel each other and generally based on the propeller
Pc T

diameter is sufficiently accurate to use in the calculation of _. The

relation between _ and Pc is given by equation (16) as

Pc = 2m_(1 + _)<l + E-__)
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where

Pc = PcT

D

If values of w are selected to cover the range and the curve for the

four-blade propeller in figure 17 is used, the following table is

obtained for the four-blade single-rotating propeller:

m

w

(assumed)

0

.1

.2

0.245

•215

•191

0.340

.313

.289

P
C

0

.o488

.0970_

m i

A plot of Pc against w gives a value of w = 0.155 at Pc = 0.075.

Then, •

--_(1 + _') (2.258)(1.155) = 2.61

From figure 17, _ is read at V_(I + _) = 2.61, and the optimum

propeller efficiency _i for a four-blade single-rotating propeller

is read from figure 15. Thus

= 0.201

Pc
_= o.373

and

_i = 0.929

With Q determined, _cz for the single-rotating propeller may

be found by a direct calculation from equation (6)

I[|]_
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l+_
_c I = ih7 K(X) sin2$

1 + --_ i + COS

Values of the circulation function K(x) at each station are obtained

from figure 4 at _(I + _) = 2.61 and the angle of the relative velocity

at the propeller is given for each station by

tan_=

i
i V i+_

_nD x

Performing these calculations for _ = 0.155 gives the values of _c_

and bc_ in the following table (the blade-_idth distribution, in feet,

for a constant c_ of 0•5 is also given):

X

0.i

.2

.3

.4

.5

.6

"7
.8

"9
"95

tan

7"74

3-870

2.58o
1.935

i.548
1.290
i.IO6

•968
•86o

•815

K(x) o'c-/,

o.0842

.o967

.lO54

.lO44

-0952

•0855

•o716

•0554

.0364
•0241

b

(ft)

0 -033

•078

.133

.185
•225
.260

.271

•257
.2o4
.146

0 -079
•182

.298

-393
.449
.483
.472

.417
•309
.216

O. 158

•364
.596

.966

.944

.834
•618

.432

O. 167
• 386
.631
;833
.952

i.o23
1.ooo

.88o
•655
•458

Dual rotation•- The procedure is repeated for a 12-foot-diamster

four-bSade dual-rotating propeller for the same design conditions as used

for the single-rotating propeller• The following table is obtained for

the four-blade dual-rotating propeller (values of a and _/_ were found
from figure 18) :

_ _/_ Pc

0

.i

.2

O. 472

•432

•398

o.589
•547
•519

. ,

•1002

•211
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In this case a plot of Pc against _ gives a value of _ = 0.075

at Pc = 0.075- Therefore,

1 + _) = 2.426

_ = 0.442

and

_i = o.964

It is seen that the important parameter, the mass-flow coefficient,

is 0.442 for the dual-rotating propeller and is only 0.201 for the

single-rotatingpropeller. The efficiBncy (_-Ithout drag) is 96.4 percent

for the dual-rotating propeller but is only 92. 9 percent for the single-

rotating propeller.

For the dual-rotating propeller the values of _cz may be found

for the frontcomponent from equation (12)_ thus,

= VV_ l__ (1 + _)_ sin q_o K(x)

nD _x i + I _ sin2_o

and for the rear propeller from equation (13)

V i (1 + _)_ sin $o

nD _x ! + _ _ sin2$o

K(x)

Equation (9) gives q_F by

V i I1 + 1 _. (1 + 1 tan2q_)]tan q_F = nD _x _ _ _
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and % is given in equation (ii) by

tan _R - nD _x 2--

Values of the circulation function K(x) are obtained from figure 8 at

the appropriate value of VnD+---_w=_ (1 + _)" Performing these calculations

for.V = 623, n = 23, D = 12, _ = 0•075, and _ = 0•442 gives the values

of tan _ and _cz in the following table:

X

O.1

.3

.4

.5

.6

"7

.8

"9

-95

K(X) tan _F

0-575 10.768

•565 2.6o8
•551 1.916
•539 1.518
•530 1.258

•455 1.075

•398 -939

•3O7 •833

•233 •789

tan SR

4.145
2.363
1.8L_

1.465

1.227
1.o56
.926
.824
.781

O. 326

.0999
•0692

.o5oi

.o37o
•0268

,0191

•0122

•oo85

0•321

.0985

.0683

.0496

.0366
•0267
.oi9o
•0122

• .oo85

bC_)F

O. 616

.564
•522
•472
•418

•354
•288
.207
•152

bC_)R

o.6o6

•557
•515

•467
.414

•352

.287
•207
•152

A comparison of the opt%mumdistribution of bc_ along the blade

for the dual-rotatingpropeller from this table with the optLmumdistri-

bution for the slngle-rotating propeller as given in the preceding

section shows that, if approximately constant cz is absorbed along the

blade, wide differences in blade plan formwill result for the two

propellers designed for the same operating condition. For the operating

conditions selected, the maximum bc_ for the single-rotating propeller

occurs near the 0.6 radius and tapers rapidly towards the tip and the

hub, being only slightly over 16 percent of its maximum value at the

O.1 radius. On the other hand, the minimum value of bc_ for optimum

distribution for the dual-rotatlngpropeller occurs at the propeller tip

and progressively increases toward the inner radii• The value of bc z

at the 0.1 radius is four times its value at the 0.95 radius•

Since the design of the dual-rotating propeller calls for high

loading over the inner sections, the efficiency of the dual-rotating

propeller is less susceptible to compressibility losses which normally

occur near the propeller tip for operation at high tip Mach numbers.

The compressibility losses maybe reduced by reducing the width of these

sections or by reducing the operating lift coefficient.
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Effect of blade dra_ on efficiency•- The loss in efficiency due to
the profile drag of the blades can be calculated from equations (20)

to (22) if the blade-width distribution and profile-drag coefficients

at the operating cz are known. Inasmuch as structural requirements may

determine the shape of the blade, especially over the inner radii, only

one example is given. The equations, however, may be applied to any plan

form. The example selected is for the four-blade single-rotating

propeller on which the induced efficiency has been previ]6usly calculated.

The shank sections of the propeller blade were assumed to be round,
similar to the Hamilton Standard Propeller No• 3155-6 and the blade plan

form from x = 0.3 to x = l•O was made optimum for a c_ of 0.5. The

profile-drag coefficients for the several radii are the same as given in

reference 7 for the Hamilton Standard Propeller No. 3155-6 which has

Clark Y sections and are given in the following table. It is assumed that

a spinner covers the inner 0.2 of the radius. The distribution of _cz

with x and of sin _ with x have been included in the table:

0.2

.3
-4

.5

.6

"7
.8

"9

oc_

o.o967
.]-O54
.io44

.0952
•0855
.0716

.o554
•0364

0.1934
.2108
.2O88

.1904
•1710

.1432

.iio8
•0728

Cd

0,400

.i00

.020

.010

.oo8

•oo7
.oo6
.o06

sin

0.968
.932
.889
.840

.790
.74-2
.696
.652

°Cd

sin

O.Ol_O
.00697
.oo188

.00113

.oo1o4

.00095
•o0o77
.00060

°Cd x3

sin

0.00064
.ooo61
.0003o
.00028

.00037

.ooo46

.00049

.ooo49

Performing the integrations and substituting in the formulas gives

for rotatlonal-drag-loss coefficient

t r -- _0 I'0
2 °cd X3 dx-

kg 2 .2 sin_

(o.o00348) : o.oo14

and for the axial-drag-loss coefficient

[[_! ,-
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i. 0 _Cdt a = 2 sin
.2

_xdx

= 2(0.00213) = 0.0043

The induced thrust coefficient has been given by equation (14) as

[ >]= 2(0.201)(0.155) 1 + 0.155 _ T 0.29 = 0.07OO

s

o-

T

w

and the induced power coefficient by equation (16) as

Pc = 2_7(i + _)(i + !_)

= 2(0.201)(0.155)(i.155)(i.045) = 0.0754

The induced efficiency is

0.0700 = 0.929
o.o754

With drag included, the total thrust is given by

cST = c s - t a

= 0.0700 - 0.0043 = 0.0657
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and

The efficiency is

PcT = Pc + tr

= 0.0754 + 0.0014 = 0.0768

csT 0.0657 0.855

PCT 0.0768

Thus it is seen that the blade drag of the magnitude given in the

preceding table reduces the propeller efficiency from 92.9 percent

to 85. 5 percent for the propeller operating conditions given.

CONCLUDING REMARKS

A comparison of Theodorsen's propeller theory with the conventional

vortex theory shows that the optimum load distribution along the blade

for single-rotating propellers obtained by the two theories is essen$ially

identical and as a _esult the optimum efficiencies-are the same for a

given operating condition. Theodorsen's theory has the advantage,, however,

that the optimum efficiency for any design condition can be obtained

quickly and accurately by the use of the mass coefficient _ without any

laborious calculations and before the final design is made.

The distribution of the circulation function K(x) for the idealized

dual-rotating propeller is radically different from the existing values

for the single-rotating propeller that have been previously used for the

dual-rotating propeller. Also, the mass coefficient a for the dual-

rotating propeller is larger than the sum of the values for two single-

rotating propellers. These quantities, which are not available from
mathematical computations but are obtained from the electrical-analogy

method of Theodorsen, are used herein for obtaining the optimum load
distribution along the blade for the dual-rotating propeller.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field, Va.
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Velocity diagram for dual-rotaling propeller.
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Figure 3.- Circulation function K(x) for two-blade single-rotatin_
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Figure 6.- Circulation function K(x) six-blade single-
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K(x)

0

Figure 7.- Circulation function K(x) for eight-blade single-
rotating propeller.
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K(x)

o 1

37

Figure 8.- Circulation function K(x) for four-blade dual-rotating

propeller (reference I),
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Figure I0.-Circulationfunction K(x) for twelve-bladedual-rotating
propeller (referencei).
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Flgure 12,- Measured values of mass coefficient x for dual-rotating

propellers wl[h various numbers of blades. Two-blade single-

rotating propeller included for comparlson (reference i).
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Figure 16.- Values of _ and ,_ for two-blade single-
rotating propeller.
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Figure i8.- Values Of e and ,: for four-blade dual-
rotating propeller.
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Figure 19.-

1.6

Values of _ and • for eight-blade dual-
rotating propeller.
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Figure 20.-
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Values of _ and m for twelve-bladedual-

rotatingpropeller.
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